I. HIGHLIGHTS

- The number of COVID-19 confirmed cases in Ethiopia surpassed 50,000.
- Total of 133,872 laboratory samples were tested in the WHO-Epi-Week-35 which is a 9.7% decrease compared to the WHO-Epi-Week-34.
- The positivity rate for the WHO-Epi-Week-35 is 7.83% which is almost comparable to preceding week with positivity rate of 7.31%.
- The number of COVID-19 confirmed cases and deaths in Ethiopia have decreased by 3.3% and 23.3%, respectively, in the WHO-Epi-Week-35 compared to the reports in the Epi-Week-34.
- A total of 10,441 new confirmed COVID-19 cases and 115 COVID-19 related deaths were reported during the WHO Epi-Week-35.
- As of August 30, 2020, a total of 51,112 COVID-19 confirmed cases and 793 deaths have been reported in Ethiopia.
- There were total of 3,387 newly recovered COVID-19 cases during the WHO Epi-Week-35 bringing the total number of recovered cases to 18,382.
- A total of 5,701 COVID-19 confirmed cases are on Home Based Isolation and Care.
- A total of 33,620 contacts were identified during the WHO Epi-week-35.
II. BACKGROUND

The Ministry of Health (MOH) and Ethiopian Public Health Institute (EPHI) in collaboration with partners have intensified response efforts to prevent the spread and severity of Corona Virus Disease 2019 (COVID-19) in Ethiopia. The national and the regional Public Health Emergency Operation Centers (PHEOC) have been activated and laboratory diagnosis capacity has been expanded to other national institutions, subnational and private laboratories.

The national and regional PHEOC are playing a pivotal role in coordinating resources from different responding agencies and coordinating COVID-19 related information through a regular EOC meetings and partners’ coordination forums. The MOH and EPHI are providing information to the general public and stakeholders on a regular and uninterrupted manner using different means of communication modalities.

The WHO and other partners are currently supporting in scaling-up preparedness and response efforts and implementation of related recommendations suggested by the IHR Emergency Committee.

III. EPIDEMIOLOGICAL SITUATION

Global Situation

- Between December 31, 2019 and August 30, 2020, COVID-19 pandemic affected 216 countries/territories causing 24,854,140 cases and 838,924 deaths (CFR=3.37%) globally.

- Of the total cases and deaths reported since the beginning of the outbreak, 1,796,852 cases and 36,554 deaths were reported during the WHO Epi-Week-35.

- The United States of America (USA) reported the highest number of cases (5,855,521) and deaths (180,689) with CFR of 3.08% followed by Brazil (3,804,803 cases and 119,504 deaths with a CFR of 3.14%). The highest proportion of death occurred in Yemen with CFR of 28.89%.

- In Africa, 56 countries/territories have reported COVID-19 cases.

- As of August 30, 2020, a total of 1,241,480 cases and 29,462 deaths were reported across the continent (CFR=2.37%).

- During the WHO-Epi-Week-35, a total of 58,544 cases and 1,816 deaths were reported across the continent.

- Ethiopia reported the highest number of COVID-19 confirmed cases in East Africa. See the summary dashboard below.
Fig. 1: Global distribution of COVID-19 cases as of August 30, 2020. (Data source: WHO)
Fig. 2: COVID-19 Global Situation Update as of August 30, 2020 (Source: WHO)
Fig. 3: COVID-19 Situation Update in Africa as of August 23, 2020 (Source: WHO)

National COVID-19 situation

- The number of COVID-19 confirmed cases in Ethiopia surpassed 50,000 cases.
- Ten-thousand-four-hundred-forty-one (10,441) newly confirmed COVID-19 cases (3.3% decrease compared to that of Epi-Week-34) and 115 COVID-19 related deaths (23.3% decrease compared to that of Epi-Week-34) were reported during the WHO Epi-Week-35.
- As of August 30, a total of 51,112 confirmed COVID-19 cases and 793 deaths were recorded in the country.
- For detail, see the summary dashboard below.
Table 1: Summary of National COVID-19 situation in the WHO-Epi-Week-35

<table>
<thead>
<tr>
<th>Regions</th>
<th>Total Case</th>
<th>New Case</th>
<th>Total Admission</th>
<th>New Admission</th>
<th>Total Death</th>
<th>Total_Recovered</th>
<th>On_Treatment</th>
<th>Critical Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addis Ababa</td>
<td>30379</td>
<td>692</td>
<td>12842</td>
<td>164</td>
<td>621</td>
<td>10487</td>
<td>1975</td>
<td>305</td>
</tr>
<tr>
<td>Oromia</td>
<td>6186</td>
<td>119</td>
<td>2424</td>
<td>19</td>
<td>59</td>
<td>1566</td>
<td>851</td>
<td>9</td>
</tr>
<tr>
<td>Tigray</td>
<td>3693</td>
<td>76</td>
<td>2670</td>
<td>42</td>
<td>14</td>
<td>2302</td>
<td>357</td>
<td>10</td>
</tr>
<tr>
<td>Amhara</td>
<td>2335</td>
<td>91</td>
<td>1880</td>
<td>66</td>
<td>10</td>
<td>1187</td>
<td>679</td>
<td>6</td>
</tr>
<tr>
<td>Sidama</td>
<td>1415</td>
<td>16</td>
<td>1291</td>
<td>20</td>
<td>2</td>
<td>633</td>
<td>649</td>
<td>3</td>
</tr>
<tr>
<td>SNNPR</td>
<td>1281</td>
<td>92</td>
<td>1222</td>
<td>125</td>
<td>12</td>
<td>494</td>
<td>718</td>
<td>1</td>
</tr>
<tr>
<td>Somali</td>
<td>1230</td>
<td>54</td>
<td>450</td>
<td>0</td>
<td>20</td>
<td>385</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>Harari</td>
<td>1141</td>
<td>59</td>
<td>823</td>
<td>0</td>
<td>25</td>
<td>220</td>
<td>581</td>
<td>11</td>
</tr>
<tr>
<td>Afar</td>
<td>1072</td>
<td>168</td>
<td>502</td>
<td>0</td>
<td>4</td>
<td>378</td>
<td>108</td>
<td>0</td>
</tr>
<tr>
<td>Dire Dawa</td>
<td>975</td>
<td>17</td>
<td>763</td>
<td>5</td>
<td>20</td>
<td>689</td>
<td>65</td>
<td>3</td>
</tr>
<tr>
<td>Gambella</td>
<td>794</td>
<td>2</td>
<td>504</td>
<td>22</td>
<td>18</td>
<td>403</td>
<td>85</td>
<td>2</td>
</tr>
<tr>
<td>Benishangul G</td>
<td>621</td>
<td>82</td>
<td>344</td>
<td>0</td>
<td>0</td>
<td>250</td>
<td>94</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 4: Weekly Summary of the COVID-19 situation in Ethiopia, August 30, 2020

Fig. 5: COVID-19 confirmed cases, recovery and death by WHO Epi-Week as of August 30, 2020, Ethiopia

Epi-Surveillance and Laboratory Related Activities

There is ongoing travelers’ health screening at point of entries (POEs), follow-up of international travelers, mandatory quarantine of passengers coming to Ethiopia, rumor collection, verification, investigation and information provision via toll free call center, active case detection by house to house search, contact listing, tracing and follow-up of persons who had contact with confirmed cases. There is also laboratory investigation of suspected cases, quarantined individuals, contacts of confirmed cases, SARI/pneumonia cases and community members.
Fig. 6: Summary of COVID-19 confirmed cases in Ethiopia as of August 30, 2020.

Contact tracing and follow-up:

- As of August 30, 2020:
 - A total of 197,227 contacts of confirmed cases have been identified. Of these 33,620 contacts were identified in the WHO-Epi-Week-35.
 - Of total contacts, 125,468 (63.60%) have completed 14 days follow-up, while 71,759 contacts are still on follow-up.
 - Only 360 (0.18%) contacts have developed COVID-19 suggestive symptoms. Of these symptomatic contacts, 324 (90%) have tested positive.
 - Overall, 13,499 (6.84%) of the contacts (symptomatic plus asymptomatic) have tested positive, which are among the currently existing confirmed positive cases.

Fig. 7: Summary of COVID-19 cases contact tracing update in Ethiopia as of August 30, 2020
Rumors collection and verification from all sources

- As of August 30, 2020:
 - 183,585 rumors/alerts have been received and 177,031 (96.5%) have been investigated. Of these, 38,153 rumors were reported in the WHO-Epi-Week-35.
 - 137,210 (74.73%) of the rumors/alerts have fulfilled the suspected case definition.

Point of entry and Quarantine related activities

- Since the start of the outbreak, 984,156 passengers have been screened and 418,993 (42.5%) of them were screened at Bole International Airport.
- Since March 23, 2020 (mandatory quarantine started), 60,510 passengers have been quarantined nationally and 19,714 (32.5%) passengers were quarantined in AA.
- Currently 6,141 passengers are in quarantine centers across the country.

Laboratory related activities

- The number of COVID-19 laboratory tests performed is increasing from time to time.
- The Community Based activities and Testing (COMBAT) campaign has enhanced the number of COVID-19 laboratory tests and cases detected.
- As of August 30, 2020, a total of 890,929 samples have been tested for COVID-19 by laboratories across the country.
- 133,872 laboratory tests were processed during the WHO Epi-Week-35, which is 9.7% decrease compared to that of Epi-Week-34.
- The positivity rate for the WHO-Epi-Week-35 is 7.83%, which is almost comparable to preceding week with positivity rate of 7.31%.
- The overall positivity rate for the laboratory test since the occurrence of the disease in the country is 5.73%.
Fig. 8: Trend of COVID-19 laboratory testing by WHO Epi-Week as of August 30, 2020, Ethiopia.
IV. Coordination and Leadership

- Since its activation, the national PHEOC is collaboratively working with stakeholders: government agencies, partner organizations, UN agencies, embassies, hospitals, Industrial parks and others.
- Morning briefing of IMS is being conducted daily by core IMS staffs and key partners’ representatives.
- Weekly virtual (zoom) meeting is being conducted with technical working group members, which comprises members from subnational level focal, key partners and stakeholders.
- Weekly leadership and strategic virtual (zoom) meeting, chaired by the H.E MOH Minister, is being conducted.
- Supports (financial, logistic and technical) are being received from partners, private institutions, individuals and donors.

V. Regional Support

- Team deployed to all regions, 42 staffs mobilized from EPHI/MOH, 18 public health professional contracted by the Africa CDC and 74 public health professionals contracted by Ohio State University, to support the sub-national COVID-19 response efforts and more than 15 rented vehicles by the EPHI and Africa CDC in addition to the Field epidemiology training program vehicles are being engaged on the COVID-19 activities.
- Trainings on DHIS-2 has been provided for all team members who are deployed to regions

VI. Case Management and IPC

- Currently there are a total of 31,945 active COVID-19 cases in the country.
- Of the active cases, 291(0.91%) patients are in severe clinical condition.

![Graph of COVID-19 Cases in Ethiopia](image)

Fig. 10: Summary of case management update as of August 30, 2020.
Home Based Isolation and Care:

- Since Home Based Isolation and Care (HBIC) started in Ethiopia:
 - The two city administrations (Addis Ababa and Dire Dawa) and five regional states (Oromia, Benishangul Gumuz, Afar, Somali and Harari) have started HBIC.
 - So far, total 7,975 COVID-19 confirmed cases have been on HBIC and 2,275 (28.5%) of them have recovered.
 - 5,701 cases are currently on HBIC.
 - Of cases on HBIC, only 2 have deceased.
 - So far, 67 cases have been transferred from treatment centers to HBIC after improvement.
 - So far, 63 cases have been transferred from HBIC to treatment centers for better care.

VII. Risk Communication and Community Engagement (RCCE)

- Daily press statement is being given on COVID-19 situation on daily basis through Mass Media.
- Different posters, brochures, audio and video messages, focusing on COVID-19 risk perception and practice, are being developed and posted on the social media and other communication portals.
- Oromia Regional Health Bureau conducted sensitization workshop on ComBAT and launched mask Ethiopia with community leaders, artists and other influential leaders.
- Mobile based training on COVID-19 response for HEW’s launched in Tigray region.
- H.E. Deputy Prime Minister Demeke Mekonnen, H.E. Dr. Lia Tadesse (MOH) and other COVID-19 national committee members have visited COVID-19 field Hospital, which is under construction, in Bole Bulbula.
VIII. Logistic and Supplies

- There are ongoing distribution of pharmaceuticals and medical supplies to quarantine, isolation and treatment centers.
- Number of governmental and Non-Governmental organizations, individuals and partners have been donating different medical supplies and infrastructures for COVID-19 response.
- There is an ongoing quantification of Medicines, PPEs, supplies and medical equipment for validation workshop.
- Besides this, in the WHO-Epi-Week-35:
 - Facilitated custom clearance of COVID-19 items.
 - Preparation of guide for disinfection of COVID-19 supplies is ongoing.
 - 149 local manufacturers and 106 Importers of PPE identified from Ethiopian Food and Drug Administration (EFDA) for local production mapping.
 - Automation of data tracking system in Addis Ababa Health Bureau EOC is started.

Training and Orientation Activities

- There is ongoing training and orientation for the public and health professionals on COVID-19.
- In the WHO Epi-Week-35:
 - Four days TOT on Home-Based Isolation and Care provided for 36 health care workers from Somali, Dire Dawa and Harari regions.
IX. Challenges and Way Forward

Challenges

- Weak adherence to physical distancing and other preventions advises among the public.
- Increasing number of cases being detected in the community and by dead body surveillance and testing.
- Low stock status of personal protective equipment is still a problem.
- There is critical shortage of beds for COVID-19 patients.

Way Forward

- Advocate and strengthen Home Based Isolation and Care (HBIC).
- Enhance response efforts by maintaining the capacities achieved during the Community-based Actions and Testing (COMBAT) campaigns.
- Conduct intensive testing of high-risk areas for COVID-19.
- Enhance technical support, coordination and timely and accurate information sharing at all levels.
- Strengthened collaboration and coordination with key stakeholders and partners.
- Intensify risk communication and community engagement activities.
- Enhance active surveillance for COVID-19 such as house-to-house case search and detection in the community.
- Intensification of a capacity building trainings and orientation including through virtual/online platforms.
- Identify and establish additional case treatment centers and quarantine sites, especially in regions.
- Strengthen and sustain essential health services other than COVID-19.
X. Public Health Policy Recommendation

Advice for the Public:

- For any individual confirmed to have COVID-19 and who is candidate for Home Based Isolation and Care:
 - Properly isolate from other family members.
 - Take full responsibility in prevention of transmission.
 - Strictly adhere to the National Directive of Home-Based Isolation & Care.
 - Provide reliable information during regular follow up either by phone or home visit.
 - Report to nearest health facilities/follow up team in case of any emergency, appearance of new symptoms or worsening of existing symptoms.

- It is important to be informed of the situation and take appropriate measures to protect yourself and your family.
 - Stay at home
 - Wash hands frequently
 - Don’t touch your mouth, nose or eye by unwashed hands
 - Keep physical distancing; avoid mass gathering and shaking hands.

- Adhering to all these precaution measures is also highly recommended during planting trees in this summer season.

- For most people, COVID-19 infection will cause mild illness however, it can make some people very ill and, in some people, it can be fatal.

- Older people, and those with pre-existing medical conditions (such as cardiovascular disease, chronic respiratory disease or diabetes) are at risk for severe disease.

- If anybody had contact with a COVID-19 confirmed patient, he/she should call 8335 or 952 or report to regional toll-free lines or to the nearby health facilities.

National/Regional official websites, social media pages and toll free hotline for COVID-19 information

<table>
<thead>
<tr>
<th>MOH/EPHI/Region</th>
<th>Facebook page</th>
<th>Toll-free hotline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethiopian Public Health Institute Main Website</td>
<td>https://www.ephi.gov.et/</td>
<td>8335/952</td>
</tr>
<tr>
<td>Ethiopian Public Health Institute Facebook Page</td>
<td>https://www.facebook.com/ephipage/</td>
<td></td>
</tr>
<tr>
<td>Ethiopian Public Health Institute Twitter Page</td>
<td>https://twitter.com/EPHIEthiopia</td>
<td></td>
</tr>
<tr>
<td>Ethiopian Public Health Institute Telegram Channel</td>
<td>https://t.me/EthPHI</td>
<td></td>
</tr>
<tr>
<td>Ethiopian Public Health Institute YouTube Channel</td>
<td>https://www.youtube.com/channel/UCvvTzeY-IJiQfEFBULH9Mkw</td>
<td></td>
</tr>
<tr>
<td>Ministry of Health, Ethiopia Website</td>
<td>www.moh.gov.et</td>
<td>952</td>
</tr>
<tr>
<td>Ministry of Health, Ethiopia Facebook Page</td>
<td>https://www.facebook.com/EthiopiaFMoH/</td>
<td></td>
</tr>
</tbody>
</table>
Health Evidence summary

<table>
<thead>
<tr>
<th>Articles/Comment/Correspondence/Editorials</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explaining the Homogeneous Diffusion of Covid-19 Policies among Heterogenous Countries</td>
<td>• The need for non-pharmaceutical interventions aimed at curtailing the spread of infectious diseases depends crucially on country-specific demographic and public health situations.</td>
</tr>
<tr>
<td>https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3672976</td>
<td>• However, the early stages of the Covid-19 pandemic saw an almost homogeneously rapid adoption of such interventions across otherwise heterogeneous countries. We analyze the adoption of disease-transmission interventions in the OECD countries, and find that they are only weakly predicted by standard epidemiological indicators (confirmed infections, deaths, intensive care capacity) but strongly predicted by standard indicators in the literature on diffusion of interventions (number countries adopting the same policy; in particular, the number of proximate countries). We also examine whether the level of democracy in a given country influences the speed at which it adopts such interventions. We provide insights for research on international policy diffusion and the emerging strand of research pondering the political consequences of the Covid-19 pandemic.</td>
</tr>
<tr>
<td>Utility of Available Methods for Diagnosing SARS-CoV-2 in Clinical Samples</td>
<td>• The results showed that most of the proposed tests focused on molecular methods, while immunological and point-of-care tests were investigated in 13 studies.</td>
</tr>
<tr>
<td>https://sites.kowsarpub.com/apid/articles/103677.html</td>
<td>• There were also a few commercial automated methods for the qualitative detection of SARS-CoV-2 in clinical samples, most of which are not examined in the current review, as no data about their sensitivity and specificity were presented. Although the assessment of publication biases showed that 64% sensitivity and nearly 100% specificity for RT-PCR are close to reality, most of the related reports for serological methods are not valid and further studies are needed to confirm their utility in clinical settings. Moreover, the RT-PCR test alone cannot act as a gold standard because of bias in measurements. Therefore, antibody tests and other proposed methods could be used as supplementary diagnostic tests to improve</td>
</tr>
</tbody>
</table>
RT-PCR accuracy. Although clinical findings are invaluable, in many cases, they can provide more valuable supportive data than serological tests.

<table>
<thead>
<tr>
<th>Recommended Guidelines for Forensic Pathology Examination of Deaths Related to Novel Coronavirus Infection (Trial Draft) http://www.fyxzz.cn/CN/10.12116/j.issn.1004-5619.2020.01.003</th>
<th>• Autopsy is of great significance for elucidating the pathological changes, pathogenic mechanism and causes of death of the new type of coronavirus pneumonia, and can provide a theoretical basis for more scientific and accurate prevention and control of the new type of coronavirus pneumonia. We follow the "Law of the People's Republic of China on the Prevention and Control of Infectious Diseases" and other relevant laws and regulations, the clinical and epidemiological characteristics of the new coronavirus pneumonia, and guidelines for epidemic prevention and control, combined with the actual work of forensic pathology, from case investigation, anatomy room requirements, In terms of personal protection, autopsy and anatomical examinations and auxiliary examinations, the "Guidelines for Forensic Pathology Examination Recommendations for Deaths Related to Novel Coronavirus Infection (Trial Draft)" have been formed for the reference of forensic medicine and pathology examination institutions and examiners.</th>
</tr>
</thead>
<tbody>
<tr>
<td>COVID-19 Clinical Characteristics, and Sex-Specific Risk of Mortality: Systematic Review and Meta-Analysis https://dx.doi.org/10.3389%2Ffmed.2020.00459</td>
<td>• COVID-19 has caused a significant number of hospitalization and mortality worldwide. Mortality associated with COVID-19 was higher in our study compared to the previous reports from China. The mortality was significantly higher among the hospitalized male group. Further studies are required to evaluate the effect of different variables resulting in sex disparity in COVID-19 mortality.</td>
</tr>
<tr>
<td>Epidemiology of COVID-19: A Systematic Review and Meta-analysis of Clinical Characteristics, Risk factors and Outcomes https://pubmed.ncbi.nlm.nih.gov/32790106/</td>
<td>• COVID-19 is associated with a severe disease course in about 23% and mortality in about 6% of infected persons. Individuals with comorbidities and clinical features associated with severity should be monitored closely, and preventive efforts should especially target those with diabetes, malignancy and immunosuppression.</td>
</tr>
<tr>
<td>Maternal and neonatal characteristics and outcomes among COVID-19 infected women: An updated systematic review and meta-analysis https://doi.org/10.1016/j.ejogrb.2020.07.034</td>
<td>• Results: A total of 790 COVID-19 positive females and 548 neonates from 61 studies were analyzed. The rates of C-section, premature birth, low birth weight, and adverse pregnancy events were estimated as 72 %, 23 %, 7 %, and 27 % respectively. In the heterogeneity analysis, the rate of C-section was substantially higher in Chinese studies (91 %) compared to the US (40 %) or European (38 %) studies. The rates of preterm birth and adverse pregnancy events were also lowest in the US studies (12 %, 15 %) compared to Chinese (17 %, 21 %), and European studies (19 %, 19 %). In case reports, the rates of C-section, preterm birth, and low birth weight were estimated as 69 %, 56 %, and 35 %, respectively. Adverse pregnancy outcomes were associated with infection acquired at early gestational ages, more symptomatic presentation, myalgia symptom at presentation, and use of oxygen support therapy. • Conclusions: Adverse pregnancy outcomes were prevalent in COVID-19 infected females and varied by location, type, and size of the studies. Regular screening and early detection of COVID-19 in pregnant women may provide more favorable outcomes.</td>
</tr>
</tbody>
</table>
Incubation period of COVID-19: a rapid systematic review and meta-analysis of observational research

https://doi.org/10.1136/bmjopen-2020-039652

- **Results:** The incubation period distribution may be modelled with a lognormal distribution with pooled mu and sigma parameters (95% CIs) of 1.63 (95% CI 1.51 to 1.75) and 0.50 (95% CI 0.46 to 0.55), respectively. The corresponding mean (95% CIs) was 5.8 (95% CI 5.0 to 6.7) days. It should be noted that uncertainty increases towards the tail of the distribution: the pooled parameter estimates (95% CIs) resulted in a median incubation period of 5.1 (95% CI 4.5 to 5.8) days, whereas the 95th percentile was 11.7 (95% CI 9.7 to 14.2) days.

- **Conclusions:** The choice of which parameter values are adopted will depend on how the information is used, the associated risks and the perceived consequences of decisions to be taken. These recommendations will need to be revisited once further relevant information becomes available. Accordingly, we present an R Shiny app that facilitates updating these estimates as new data become available.

Automated and partly automated contact tracing: a systematic review to inform the control of COVID-19

https://doi.org/10.1016/S2589-7500(20)30184-9

- No empirical evidence of the effectiveness of automated contact tracing (regarding contacts identified or transmission reduction) was identified. Four of seven included modelling studies that suggested that controlling COVID-19 requires a high population uptake of automated contact-tracing apps (estimates from 56% to 95%), typically alongside other control measures.

- Studies of partly automated contact tracing generally reported more complete contact identification and follow-up compared with manual systems.

- Automated contact tracing could potentially reduce transmission with sufficient population uptake. However, concerns regarding privacy and equity should be considered.

- Well-designed prospective studies are needed given gaps in evidence of effectiveness, and to investigate the integration and relative effects of manual and automated systems. Large-scale manual contact tracing is therefore still key in most contexts.

Medical masks vs N95 respirators for preventing COVID-19 in healthcare workers: A systematic review and meta-analysis of randomized trials

- Four RCTs were meta-analysed adjusting for clustering. Compared to N95 respirators; the use of medical masks did not increase laboratory confirmed viral (including coronaviruses) respiratory infection (OR 1.06; 95% CI 0.90-1.25; I(2) =0%; low certainty in the evidence) or clinical respiratory illness (OR 1.49; 95%CI 0.98-2.28; I(2) =78%; very low certainty in the evidence). Only one trial evaluated coronaviruses separately and found no difference between the two groups (p=0.49). LIMITATIONS: Indirectness and imprecision of available evidence.

- **CONCLUSIONS:** Low certainty evidence suggests that medical masks and N95 respirators offer similar protection against viral respiratory infection including coronavirus in health care workers during non-aerosol generating care. Preservation of N95 respirators for high-risk, aerosol generating procedures in this pandemic should be considered when in short supply.

COVID-19 updates and sources of evidence:

<table>
<thead>
<tr>
<th>Source</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO Coronavirus (COVID-19) dashboard</td>
<td>https://covid19.who.int/</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
The above presented Quick Reader (QR) code takes you to a portal that you can access updates and all COVID-19 related information available (https://www.ephi.gov.et/index.php/public-health-emergency/novel-corona-virus-update)

DISCLAIMER
This weekly bulletin is produced based on figures pulled from official releases of the World Health Organization and activities and reports of all the sections under the Incident management System.
This Weekly Bulletin series of publications is published by the Ethiopian public health Institute (EPHI), public health emergency operation center (PHEOC). The aim of this bulletin is to inform decision makers within the institute and FMGH, UN agencies and NGOs about COVID-19 preparedness and response activities. All interested health and other professionals can get this bulletin at the Institute website; www.ephi.gov.et

PREPARED BY
Lehageru Gizachew (MD, MPH) – Planning Section, Situation Unit Member
Negusse Yohannes (PhD in Statistics) – Planning Section, Situation Unit Member

CONTRIBUTORS
Zelalem Kebede (MPH) – Planning Section, Situation Unit Member
Haftom Taame (MPH-Field Epi) - Africa CDC

EDITED AND REVIEWED BY
Shambel Habebe (MPH-Field Epi) - Planning Section Chief
Zewdu Assefa (MPH- Field Epi) - Deputy Incident Manager
Aschalew Abayneh (RN, BSc, MPH) - DDG-EPHI, Incident Manager

PHEOC National COVID-19 Response

FOR MORE INFORMATION and NOTIFICATION
Web: www.ephi.gov.et
Follow us on Twitter: @EPHIEthiopia
Call: 8335/952 (TOLL FREE LINE) or 011 276 5340
Email: ephieoc@gmail.com or phemdatacenter@gmail.com