Abstract

The Ethiopian National Food Consumption Survey (FCS) was conducted in response to a request by the Federal Ministry of Health to provide evidence for the National Food Fortification Program. The survey was conducted in 2011 by the then Ethiopian Health and Nutrition Research Institute now EPHI, and collected nationally and regionally representative cross-sectional FCS among 8424 households (HH) across 9 regions and 2 city administrations. In most HH, one child 6-35 months and one woman 15-45 years were interviewed for selected socio-demographic characteristics, recent morbidity, anthropometry and single 24 hour dietary recall, including recipes, food sources and methods of preparation. Potential upper levels of intake were also estimated among men 20-45 years from 1/3 of urban HH. Findings on wheat and oil consumption are presented. The extensive dietary data now available through this survey will continue to inform and guide nutrition policy, strategy, educational messages and program development, well beyond the national fortification program.

Background

- Consumption patterns are affected by various factors
- FCS is one of the first nationally representative surveys to be conducted using individual-level 24-hour dietary recall data
- Second country in Africa conducting a national FCS on a specific population group.
- Evidence base for fortification should include factors that influence fortification programs such as
 - Nutrient intakes in key populations
 - Regional, economic, demographic, distribution, seasonal, and socio-economic factors that influence dietary habits including commonly consumed foods

Objective

The objective was to collect individual level food consumption data at the national and regional level in order to:
- Identify commonly consumed foods in different geographical settings, thus potential food vehicles for fortification.
- Determine the level of fortification possible, given current intakes of fortifiable foods, and potential impact on improving intakes of key micronutrients (iron, vitamin A, zinc), particularly in children and women of child bearing age

Methods

- Data collection included 24-hour dietary recall, anthropometry and household characteristics.
- The target population was children (6-35 months), their closest female caregiver (15-49 years) and (in 30% of urban HH) their closest male caregiver (19-45 years of age) from 324 enumeration areas.
- All data were double entered using CSPro software after manual editing.
- The EPHI/EHNRI nutrient database was used as primary source of food composition data.
- When EPHI data was missing for a given food or nutrient other databases were used.
- Gram food values were converted into nutrients using the updated food composition nutrient database and the analysis was done using SPSS.
- The total reported intake of each subject for each nutrient over the 24hr period was calculated.
- National averages were calculated using sampling weights provided by the Central Statistics Agency.

Challenges faced

- Financial delays during data collection
- Logistics
- Extreme weather conditions
 - Rainy season: high rainfall
 - Extremely hot, up to 47°C in Afar
- Difficulties with cleaning, checking and coding of dietary data
- Enlarging the existing Ethiopian food composition table to include key nutrients for more than 2000 items.

Results

Table 1: Total number of surveyed population by region

<table>
<thead>
<tr>
<th>Region</th>
<th>Place of Residence</th>
<th>Urban</th>
<th>Rural</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tigray</td>
<td>143</td>
<td>143</td>
<td>30</td>
<td>668</td>
</tr>
<tr>
<td>Afar</td>
<td>82</td>
<td>81</td>
<td>13</td>
<td>536</td>
</tr>
<tr>
<td>Amhara</td>
<td>133</td>
<td>133</td>
<td>33</td>
<td>941</td>
</tr>
<tr>
<td>Oromiya</td>
<td>134</td>
<td>131</td>
<td>28</td>
<td>958</td>
</tr>
<tr>
<td>Somali</td>
<td>106</td>
<td>105</td>
<td>21</td>
<td>580</td>
</tr>
<tr>
<td>Benshangul Gumuz</td>
<td>80</td>
<td>80</td>
<td>22</td>
<td>551</td>
</tr>
<tr>
<td>SNPPR</td>
<td>111</td>
<td>111</td>
<td>29</td>
<td>944</td>
</tr>
<tr>
<td>Gambella</td>
<td>108</td>
<td>108</td>
<td>13</td>
<td>403</td>
</tr>
<tr>
<td>Harari</td>
<td>196</td>
<td>224</td>
<td>49</td>
<td>264</td>
</tr>
<tr>
<td>Addis Ababa*</td>
<td>652</td>
<td>788</td>
<td>81</td>
<td>-</td>
</tr>
<tr>
<td>Dire Dawa</td>
<td>328</td>
<td>328</td>
<td>61</td>
<td>161</td>
</tr>
<tr>
<td>Group Total</td>
<td>2073</td>
<td>2232</td>
<td>380</td>
<td>6006</td>
</tr>
</tbody>
</table>

- Rural men were not targeted with this survey; Addis Ababa had no rural areas; totals reflect actual sample size

Conclusion

- Evidence-based justification is required in order to identify appropriate food vehicle and fortify any products for the general population.
- Data are being used to develop the NFS and number of other diet-related strategies and programs.
- Hence, it provides an extensive resource to inform and guide nutrition policy, strategy, educational messages and program development for many coming years.

Lessons learned

- A protocol with complete road map of the survey is essential before launch of the survey.
- National surveys need to be given high priority, commitment and support for every stage of the project.
- Proper planning is essential, including seeking input and experiences from other countries similar surveys (e.g. teleconference).

Acknowledgement

The authors would like to acknowledge the financial/technical support of EPHI, World Bank through FMoH, Irish Aid, Canadian International Development Agency, Micronutrient Initiative and GAIN. We also gratefully acknowledge the assistance of Profs. Rosalind and Ian Gibson in data analysis.